A.P. State Council of Higher Education Semester-wise Revised Syllabus under CBCS, 2020-21

Course 6C: Plant Tissue Culture

(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes:

Students at the successful completion of the course will be able to:

- 1. Comprehend the basic knowledge and applications of plant tissue culture.
- 2. Identify various facilities required to set up a plant tissue culture laboratory.
- 3. Acquire a critical knowledge on sterilization techniques related to plant tissue culture.
- 4. Demonstrate skills of callus culture through hands on experience.
- 5. Understand the biotransformation technique for production of secondary metabolites.

II. Syllabus: (Hours: Teaching: 50, Lab: 30, Field training: 05, others incl. unit tests: 05) (*Syllabi of theory, practical and lab (skills) training together shall be completed in 80 hours*)

Unit - 1: Basic concepts of plant tissue culture (10h)

- 1. Plant tissue culture: Definition, history, scope and significance.
- 2. Totipotency, differentiation, dedifferentiation, and re-differentiation; types of cultures.
- 3. Infrastructure and equipment required to establish a tissue culture laboratory.

Unit - 2: Sterilization techniques and culture media (10h)

- 1. Aseptic conditions Fumigation, wet and dry sterilization, UV sterilization, ultra filtration.
- 2. Nutrient media: Composition of commonly used nutrient culture media with respect to their contents like inorganic chemicals, organic constituents, vitamins, amino acids etc.
- 3. Composition and preparation of Murashige and Skoog culture medium.

Unit - 3: Callus culture technique

(10h)

- 1. Explant: Definition, different explants for tissue culture: shoot tip, auxiliary buds, leafdiscs, cotyledons, inflorescence and floral organs, their isolation and surface sterilization; inoculation methods.
- 2. Callus culture: Definition, various steps in callus culture.
- 3. Initiation and maintenance of callus Growth measurements and subculture; somaclonal variations.

Unit – 4: Micro propagation

(10h)

1. Direct and indirect morphogenesis,

organogenesis, role of

- PGRs; somaticembryogenesis and synthetic seeds.
- 2. Greenhouse hardening unit operation and management; acclimatization and hardening of plantlets need, process, packaging, exports.
- 3. Pathogen (Virus) indexing- significance, methods, advantages, applications.

Unit – 5: Applications of plant tissue culture (10h)

- 1. Germplasm conservation: cryopreservation methods, slow growth, applications and limitations; crayoprotectants.
- 2. Plant transformation techniques and bioreactors; production of secondary metabolites-optimization of yield, commercial aspects, applications, limitations.
- 3. Transgenic plants- gene transfer methods; BT cotton.

III. References:

- 1. Kalyan Kumar De (2001) An Introduction to Plant Tissue Culture, New Central Book Agency (P) Ltd., Calcutta
- 2. Razdan, M.K. (2005) Introduction to Plant Tissue Culture, Oxford & IBH Publishers, Delhi
- 3. Bhojwani, S.S. (1990) Plant Tissue Culture: Theory and Practical (a revised edition). Elsevier Science Publishers, New York, USA.
- 4. Vasil, I.K. and Thorpe, T.A. (1994) Plant Cell and Tissue Culture. Kluwer Academic Publishers, the Netherlands.
- 5. Web resources suggested by the teacher concerned and the college librarian including reading material.

Course 6C: Plant Tissue Culture – Practical syllabus

- **IV. Learning Outcomes:** On successful completion of this practical course, student will be able to:
 - 1. List out, identify and handle various equipment in plant tissue culture lab.
 - 2. Learn the procedures of preparation of media.
 - 3. Demonstrate skills on inoculation, establishing callus culture and Micro propagation.
 - 4. Acquire skills in observing and measuring callus growth.
 - 5. Perform some techniques related to plant transformation for secondary Metabolite production.

V. Practical (Laboratory) Syllabus: (30 hrs)

- 1. Principles and applications of- Autoclave, Laminar Airflow, Hot Air Oven.
- 2. Sterilization techniques for glass ware, tools etc.,
- 3. MS medium Preparation of different stock solutions; media preparation

- 4. Explant preparation, inoculation and initiation of callus from carrot.
- 5. Callus formation, growth measurements.
- 6. Induction of somatic embryos, preparation of synthetic seeds.
- 7. Multiplication of callus and organogenesis.
- 8. Hardening and acclimatization in green house.

VI. Lab References:

- 1. Reinert, J. and M.M. Yeoman, 1982. Plant Cell and Tissue Culture A Laboratory
- 2. Manual, Springer-Verlag Berlin Heidelberg
- 3. Robert N. Trigiano and Dennis J. Gray, 1999. Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press, Florida

- 4. Ashok Kumar, 2018. Practical Manual for Biotechnology, College of Horticulture& Forestry, Jhalawar, AU, Kota
- 5. Chawla, H.S., 2003. Plant Biotechnology: A Practical Approach, Nova SciencePublishers, New York
- 6. Web sources suggested by the teacher concerned.

VII. Co-Curricular Activities:

- **a) Mandatory:** (*Lab/field training of students by teacher: Lab: 10 + field: 05 hours*)
 - 1. **For Teacher**: Training of students by teacher in the laboratory/field for a total of not less than 15 hours on the field techniques/skills of sterilization procedures, preparation of media, establishment of callus culture, growth measurements; morphogenesis and organogenesis; acclimatization and hardening of plantlets.
 - 2. **For Student**: Students shall (individually) visit anyone of plant tissue culture laboratories in universities/research organizations/private facilities, write their observations on tools, techniques, methods and products of plant tissue culture; and submit a hand-written Fieldwork/Project work Report not exceeding 10 pages to the teacher in the given format.
 - 3. Max marks for Fieldwork/Project work Report: 05
 - 4. Suggested Format for Fieldwork/Project work Report: Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
 - 5. Unit tests (IE).

b) Suggested Co-Curricular Activities:

- 1. Training of students by related industrial experts.
- 2. Assignments (including technical assignments like identifying tools in plant tissueculture and their handling, operational techniques with safety and security, IPR)
- 3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
- 4. Preparation of videos on tools and techniques in plant tissue culture.
- 5. Collection of material/figures/photos related to products of plant tissue culture, writing and organizing them in a systematic way in a file.
- 6. Visits to plant tissue culture/biotechnology laboratories in universities, researchorganizations, private firms, etc.
- 7. Invited lectures and presentations on related topics by field/industrial experts